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Abstract. The convenience of a new thermodynamic frame for the description of anomalous
diffusion is explored. Our research, which makes use of a recent new definition for entropy
arising from multifractal analysis, shows that both dynamical and thermodynamical effects may
contribute to non-classical diffusion.

1. Introduction

This paper has a double motivation inspired in two different aspects of recent
thermodynamics: on the one hand, some extensions of non-equilibrium thermodynamics to
generalized transport equations [1–5] and, on the other hand, some attempts to define a non-
additive entropy for multifractal systems [6–12]. Our aim here is to study the thermodynamic
aspects of anomalous diffusion from these two different, although complementary, points
of view.

Classically, the relation between irreversible thermodynamics and transport laws (Fick’s,
Fourier’s laws, for instance) is well established [13, 14]. These laws have a wide range of
validity and they are very useful for applications. However, there are situations in which they
must be generalized taking into account, for instance, memory effects, non-local effects or
nonlinear effects. The generalization of such transport laws has stimulated in recent years a
corresponding generalization of the underlying non-equilibrium thermodynamics [1–5]. The
basic idea of these developments is that dynamics and thermodynamics must be dealt with
in parallel, rather than assuming that there is ana priori thermodynamics (namely, the local-
equilibrium thermodynamics), which restricts the corresponding admissible dynamics. Thus,
whereas some dynamic behaviours are incompatible with the local equilibrium hypothesis,
it is possible to introduce non-classical entropies which are compatible with such dynamic
behaviours [1, 2].

In parallel for the last 20 years, another trend in modern thermodynamics has focused
on possible generalizations of the definition of entropy, which conserve their interpretation
as lack of information but do not retain certain properties hitherto considered essential,
such as extensiveness [6, 7, 15]. These new definitions apparently may apply to very
complex systems with long-range interactions, persistent memory or systems evolving in
a fractal space, where the intuitive reasons which justified extensiveness do not apply any
longer. Furthermore, in these complex systems (for instance, gravitational systems, magnetic
systems, random walks, etc), the usual thermodynamic formalisms fail whenever the relevant
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thermostatistical quantities are computed, which turn out to diverge. Here we will consider
the definition proposed by Tsallis in 1988 [6] which has been seen to be a consistent
generalization both of thermodynamics and of statistical mechanics [8]

Sq = −k
1 − ∑

i p
q

i

1 − q
(1)

wherek is the Boltzmann’s constant,pi the probability of microstatei and q a constant
parameter. This generalized entropy reduces to the classical Boltzmann entropy in the limit
q → 1. Instances where this entropy has been successfully applied include stellar polytropes
[10], with the parameterq being a function of the polytrope index, and Lévy walks [11],
whereq turns out to be related to the dimension of the resulting fractal trajectory.

In this paper, we deal with the thermodynamic aspects of non-Fickian diffusion. In
contrast to classical diffusion, where the characteristic valuer of the displacement (defined,
for instance, as the root mean square of the displacement or as the radius of the sphere
which contains 90% of the total number of particles) is proportional tot1/2 in the long-time
limit, in non-Fickian diffusion, or anomalous diffusion, it behaves as

r ∼ tσ/2 (2)

with σ 6= 1. If σ = 1 one recovers the usual diffusion, and forσ < 1, or σ > 1 one
has subdiffusive or superdiffusive behaviour, respectively. Such non-Fickian aspects of
diffusion have received much attention in the last decade [16–20], both because of their
theoretical interest as well as for their applications (diffusion in fractal spaces, transport in
ion conducting materials [17], flow in rocks [18], particle diffusion in fluctuating magnetic
fields [19], transport in chaotic dynamics [20], etc). However, whereas the dynamic aspects
of diffusion leading to (2) have deserved much interest, the thermodynamic aspects have
not been studied in much detail. Only recently, some authors [11] have focused on the
thermodynamic description of Lévy-like anomalous diffusion, even though most of the
vast domain of anomalous diffusive phenomena remains virtually unexplored from the
thermodynamic point of view.

Here we shall try to balance this situation by studying the convenience of the fractal
entropy for the thermodynamic description of a kind of correlated anomalous diffusion,
namely that arising from a nonlinear diffusion equation:

∂u

∂t
= ∇2uγ . (3)

This kind of equation has been seen to arise naturally when one considers the flow of
homogeneous fluids through porous media [21], particle diffusion across magnetic fields
[22] or the spatial spread of biological populations [23]. Very recently, this dynamics has
been studied within the scheme of Tsallis’ generalized statistical mechanics by resorting to
the maximum entropy principle [12]. Here, the approach will be rather different, since our
main aim is to establish whether a new thermodynamic frame is actually needed for this
dynamics as far as non-equilibrium thermodynamics is concerned.

The paper is structured as follows: the second section contains a short overview of the
standard thermodynamic derivation of the diffusion equation which then serves as a model
to obtain the diffusion equation associated with the fractal entropy. In parallel, the diffusion
transport coefficient is allowed to depend on the particle density, thus introducing some
non-thermodynamic contributions to the anomaly in diffusion. The resulting equation is
then solved and the consequences of the second principle on this dynamics are eventually
discussed. In section 3 we study three particular cases and we finally expose the conclusions
in section 4.
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2. Fractal entropy and generalized diffusion equation

The classical approach to diffusion from thermodynamics, as may be found in classical
references such as [13] or [24], starts from the usual definition for entropy as applied to a
continuous distributionP(x, t):

S(t) = −k

∫
P(x, t) ln P(x, t) dNx (4)

By taking the continuity equation∂P/∂t = −∇ · J and assuming a linear relation
between the fluxJ and the thermodynamic force∇(δS/δP ) in the form

J = L∇ δS

δP
(5)

the following diffusion equation emerges

∂P

∂t
= k∇ (L∇ ln P) . (6)

Then, it is generally assumed that the transport coefficientL in (5) is a constant times
the distribution functionP :

L = D

k
P.

This is a subtlety in the derivation that we are especially interested in noting since it
will be important later in this paper.

By using this relation one is finally able to cast equation (6) into the more familiar
diffusion equation

∂P

∂t
= D∇2P. (7)

We now turn to a non-standard thermodynamics and we will study whether a non-
classical definition of entropy can be related to non-classical diffusion. Instead of the usual
Boltzmann definition for the entropy, namely

S1 = −k
∑

i

pi ln pi (8)

where k is Boltzmann’s constant andpi the probability of microstatei, we consider
expression (1) proposed by Tsallis [6]. The motivation of (1) is to be found in measures
arising in analysis of multifractals, and it has been used in several contexts by a number of
authors in the last few years [8, 9, 11, 12]. Making use of the fact that

∑
i pi = 1, one may

rewrite definition (1) as

Sq = − k

1 − q

∑
i

pi(1 − p
q−1
i ) (9)

which clearly shows its positivity. A thorough analysis of the mathematical properties of
(9) may be found in [7].

Here, we generalize (9) to a continuous distribution functionP(x, t) as

Sq(t) = − k

1 − q

∫
P(x, t)[1 − P q−1(x, t)] dNx (10)

wherex is the position in anN -dimensional space andt is the time.
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By means of the formal structure of classical irreversible thermodynamics [13], as we
have seen at the beginning of this section, one may identify the flux of probability in this
generalized thermodynamic formalism as

J = L∇ δSq

δP
= kq

1 − q
L∇P q−1 (11)

where L is a transport coefficient. When (11) is combined with the conservation of
probability equation

∂P

∂t
= −∇ · J (12)

one is led to the following diffusion equation for processes evolving under this
thermodynamic frame:

∂P

∂t
= − kq

1 − q
∇(L∇P q−1). (13)

It is worth noting that this kind of dynamics has a positive entropy production, as may
be seen by evaluating the time derivative ofSq , namely

dSq

dt
= kq

1 − q

∫
P q−1 ∂P

∂t
dNx. (14)

By introducing (13), integrating once by parts and assuming that the surface term
vanishes one obtains

dSq

dt
=

(
kq

q − 1

)2 ∫
L(∇P q−1)2 dNx (15)

which, providedL > 0, is always positive or zero. This is only so, however, as long as the
surface term in the derivation of (15) vanishes, namely when

LP q−1∇P q−1
∣∣
6

= 0 (16)

where6 stands for the boundary of the volume of space available for diffusion (from now
on we will take this volume to be unbounded). This relation will prove useful later in this
paper to restrict the range of the possible values for the parameters of the scheme.

We now note that, since in classical irreversible thermodynamics one hasL = DP/k

with D a constant, we are here generally led to accept a dependence forL such as
L = DP α/k with D and α constants, andk the Boltzmann constant. In the caseα = 1
one recovers the classical picture and forα 6= 1 anomalous diffusive effects of a dynamic
nature are introduced into the scheme. A concentration dependent diffusivity of this type has
been proposed for fractal diffusion (see [25], and references therein), for particle diffusion
across magnetic fields [22] and for the motion of a polytropic gas in a porous medium
[21]. We will henceforth study the effects of the parametersq andα in the description of
anomalous diffusion and thus discuss the convenience of a thermodynamic (q 6= 1) or a
dynamic (α 6= 1) description of the phenomenon, respectively.

Introducing the relationL = DP α/k into equation (13) and using the fact that
P α∇P q−1 = (q − 1)P α+q−2∇P = (q − 1)(α + q − 1)−1∇P α+q−1, we obtain the following
generalized diffusion equation,

∂P

∂t
= D

q

α + q − 1
∇2P α+q−1 (17)

which is a nonlinear equation of the form advanced in (3), elsewhere referred to as the
‘porous media equation’. This equation has been thoroughly studied in several mathematical
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works [22, 26, 27]. Here we just quote the Barenblatt–Pattle solution. This is the physical
solution for an initial delta distributionP(x, t) = δN(x) and has the remarkable property
of being the asymptotict → ∞ limit distribution of the solutions of (17) with a localized
initial distributionP(x, 0) [27]. Therefore, this solution plays the same role in the dynamics
(17) as the Gaussian does in the standard linear diffusion. Assumingq > 0, the solution of
(17) is

P(x, t) = bt−µ
{[

a2 − x2t−2µ/N
]
+
}1/(q+α−2)

for q + α > 2 (18)

P(x, t) = bt−µ

(
1

a2 + x2t−2µ/N

)1/(2−q−α)

for 2
N − 1

N
< q + α < 2 (19)

where

b =
( |q + α − 2|

2Dq[N(q + α − 2) + 2]

)1/(q+α−2)

µ = N

N(q + α − 2) + 2

[·]+ = max(·, 0) and a is a constant (depending onq and α) to be determined by
normalization. We may now advance the proposition that these solutions correspond to the
subdiffusion and superdiffusion cases, respectively, as we shall substantiate in the following
paragraph. The solutions withq + α < 2(N − 1)/N or q < 0 correspond to non-physical
probability distributions (non-normalizable) and we, therefore, ignore them altogether in
our further developments. A similar restriction, namelyq > 0, was imposed in [7] on the
grounds of purely mathematical arguments.

An important feature of these solutions is that they are of the form

P(x, t) = t−µf (xt−µ/N) (20)

and, therefore, their characteristic scaling may be easily seen to correspond to anomalous
diffusive behaviour: if one takes a measurer(t) of the spread ofP(x, t) to be the radius
of the sphere which contains a fractionβ < 1 of the total probability∫ r(t0)

0
P(|x|, t0)�N |x|N−1 d|x| = β (21)

where�N is the surface of theN -dimensional sphere of unitary radius and then consider
(21) again for a different timet , the change of variablex ′ = (t/t0)

−µ/N |x| leads one to∫ (t/t0)
−µ/N r(t)

0
P(x ′, t0)�Nx ′N−1 dx ′ = β. (22)

A simple comparison of (21) and (22) leads to the conclusion that

r(t) =
(

t

t0

)µ/N

r(t0) (23)

independently ofβ, whence one recognizes the typical anomalous diffusive scaling

r ∼ tµ/N = t1/(N(q+α−2)+2). (24)

From this last relation it is straightforward to identify the coefficient of anomalous diffusion
asσ = 2/(N(q+α−2)+2) which is greater than unity (superdiffusion) as long asq+α < 2
and, conversely,σ < 1 if q + α > 2.

We must now study under what conditions solutions (18) and (19) are fully acceptable
in the scheme that we have here presented, in the sense that they lead to a finiteSq and
that they satisfy the assumption on which the positivity of the entropy production relies,
namely condition (16). On the one hand, solution (18) is bounded and vanishes identically
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at infinity so that both the convergence ofSq and condition (16) are trivially satisfied. On
the other hand, the asymptotic behaviour of (19) isP ∼ |x|2/(q+α−2) whereas forSq to be
finite one must require thatP(x, t) fades away faster than|x|−N/q for |x| → ∞ and the
fulfilment of condition (16) demands thatP ∼ x(1−γ )/(2q+α−2) with γ > 0 in this same
limit. Consequently, after elementary calculations we find that the finiteness of the entropy
and its positivity in the superdiffusive case (q + α < 2) impose the following condition
relating the values ofq andα:

max

(
2
N − 1

N
, 2

N − q

N
, 2(1 − q)

)
< q + α < 2 and q > 0. (25)

For the sake of clarity, we represent in figure 1 the domain of the plane(q, α) where
the physical values of the parameters of our scheme lie according to condition (25).

3. Some particular cases

Let us now consider two limiting cases. First, let us suppose that all the anomaly in diffusion
is to be accounted for by dynamical mechanisms, so we then have that in our schemeq = 1
(standard thermodynamics) andα 6= 1. It is easy to show that in this situation, by choosing
α according toα = 1+ (2/N) (1/σ)−1), one is able to reproduce any arbitrary anomalous
diffusive behaviour:

r ∼ tσ/2 0 < σ < ∞.

This is easily seen by imagining the functionσ = 2/(N(q +α − 2)+ 2) represented on
the z-axis of the domain in figure 1 and slicing the resulting surface by the planeq = 1.

The other limiting case which is interesting to explore is the situation in which
anomalous diffusion is to be considered exclusively as a thermodynamic phenomenon. In
this caseα = 1 (standard dynamics) andq 6= 1 with q = 1 + (2/N)(1 − σ/σ). When we
do this, we are led to a restriction on the range over which the coefficient of anomalous
diffusion is allowed to vary. This can be seen graphically by slicing now the representation
of σ = 2/(N(q + α − 2) + 2) over the domain in figure 1 along the planeα = 1.

As a result, we see that if anomalous diffusion is to be accounted for purely on account
of a fractal thermodynamics, we find thatσ < (N + 2)/2. Therefore, a description of
turbulence whenN 6 3 (as long as it is described with the kind of correlated dynamics
considered here), where one typically hasr ∼ t3/2 [28], should demand at least a dynamic
contribution (α 6= 1) to the non-classical thermodynamics.

Essentially, no other substantial differences arise in our scheme regarding the distribution
functions or the dynamical equations when one considers a pure dynamic or thermodynamic
origin of the anomaly in diffusion, since the parametersα andq enter almost everywhere
in our scheme symmetrically asq + α.

Consequently, it seems more natural to allow a coupling of both dynamic and
thermodynamic aspects of diffusion, so thatα andq are not to be considered independent
of each other. They could, for instance, be related linearly as

α = Cq + (1 − C)

which ensures that whenq = 1 the standard picture of diffusion (α = q = 1) is encountered.
Furthermore, if we assume thatC > −1, then it is easily proved thatq < 1 corresponds to
superdiffusion andq > 1 to subdiffusion. If, in contrast, we haveC < −1, we getq < 1
(q > 1) related to subdiffusion (superdiffusion).

As we have done in the previous cases, we can now slice the surfaceσ = 2/(N(q +
α − 2) + 2) defined over the domain of physical parameters(q, α) (see figure 1) along
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Figure 1. Distribution in the(q, α) plane of the domain of non-physical situations (shaded area),
superdiffusion, subdiffusion and standard diffusion (dashed line) for a space ofN dimensions.

the planeα = Cq + 1 − C for each of the above mentioned cases, namelyC > −1 and



4328 A Compte and D Jou

C < −1. One then finds that forC > −1 one can have 0< σ < 1 + (N(C + 1)/2) which
means a restriction on superdiffusion, whereas forC < −1 one can reproduce dynamics
subject to 2/(2 − N(C + 1)) < σ < ∞ and, therefore, only a limitation on subdiffusion
is observed. It is, therefore, easy to see that the proposed combined effect of dynamics
and thermodynamics can reproduce the typical behaviour of diffusion in fully developed
turbulence, wherer ∼ t3/2, as long asC < −1 or C > (4/N) − 1, and even account for
intermittency effects [29].

4. Concluding remarks

Here we have studied the relation of a non-classical entropy with anomalous diffusion. The
need for a generalization of the entropy to describe some kinds of non-Fickian effects was
also pointed out in [30], in the very different context of case 2 diffusion, where relaxational
effects must be taken into account in the diffusion flux. The relation pointed out here goes
farther than in [30], where the relaxational effects implied a perturbative correction to the
dynamics and the thermodynamics, which was of interest for short times. In the present
work, the modification is deeper, both in the dynamics, because they are important not only
in the short-time regime but also for long times, and because, as we have shown here, it
might lead to a redefinition of the entropy rather than to a perturbative correction to it.

The relation we have shown points to a new possible application of the fractal entropy
and reveals the intimate relation between dynamics and thermodynamics in a phenomenon
of wide physical interest. In this paper we have seen that dynamic and thermodynamic
aspects of diffusion are dynamically indistinguishable except for limitations on the speed of
superdiffusion when an anomalous thermodynamics is present. An important result of this
paper has been to show that under this scheme fractal thermodynamics cannot account alone
for the superdiffusive properties of turbulence. Turbulence must necessarily include dynamic
arguments, combined or not with an underlying non-standard thermodynamic frame.

To proceed further with the role of thermodynamic effects in anomalous diffusion,
it could be enlightning to explore the equilibrium properties of a system under such a
thermodynamic description. A correlation between equilibrium properties and anomalous
diffusion set through the generalized entropy could help us elucidate the extent of the
thermodynamic contribution to anomalous diffusion. It could be interesting as well to
explore if anomalous diffusion in a shear flow leads to differences when one assumes a
dynamic or a thermodynamic basis of diffusion. If it were so, this would provide us with an
experimental procedure to establish which scheme suits better the description of a particular
anomalous diffusive phenomenon and what values ofq or α appropriately describe it.

On the other hand, our work points out the convenience of paying more attention to
the thermodynamic aspects of non-Fickian diffusion which have been up to now practically
ignored. A more detailed knowledge of the entropy could be useful when studying problems
related to the dissipation in fractal sets, or the couplings of heat and mass transport, instead
of focusing exclusively on mass transport.
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